
UNCLASSIFIED

AD 401 1461

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



I 

S -

U by: A. L. Chang and H. K. Chang

Contract No. Honr 2653(00)

U Report No. AF-1285.A-9

March 1963

CORNELL AERONAUTICAL LABORATORY, INC.

OF CORNELL UNIVERSITY, BUFPALO 21, N. Y.



(;4
CORNELL AERONAUTICAL LABORATORY, INC.

BUFFALO 21, NEW YORK

CAL REPORT NO. AF-1285-A-9

A STUDY OF FINITE-DIFFERENCE METHODS
AS APPLIED TO HYPERSONIC

VISCOUS SHOCK-LAYER EQUATIONS

MARCH 1963

AUTHORS: APPROVED BY:

A. L. Chang A. Hertzberg, Hea
Aerodynamics Res ch Dept.

H. K. Chang (



FOREWORD

The study herein reported is part of the program of research on

Viscous Flow sponsored by the U. S. Navy through the Office of Naval

Research under Contract Nonr 2653(00). The analytic series solution used

in the analyses was obtained from an earlier related study sponsored by the

U. S. Air Force through the Office of Scientific Research under Contract

AF 49(638)-952. The authors would like to take this opportunity to thank

Mr. Harvey Selib of the Systems Research Department of Cornell Aero-

nautical Laboratory for his assistance in programming the numerical

computations as well as many helpful suggestions.
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ABSTRACT

The problem of numerical integration of the parabolic differential

equations of viscous shock-layer theory are studied. Three methods are

considered: the standard explicit and implicit schemes, as well as the

explicit scheme of DuFort and Frankel. The relative merit and efficiency

of these methods are discussed in terms of numerical solutions carried out

for the shock layer on a cone.

Because of the singularity in the governing equation, the mesh size

associated with the difference approximation must be progressively refined

as the leading-edge is approached. This, in practice, places a severe handi-

cap on all difference methods, particularly the explicit scheme which is

already restricted by the requirement of stability. The examples worked

out here for flows over cones confirm that the implicit and DuFort-Frankel

explicit schemes, which are not subject to the stability requirement, are

more effective. Although the difference between the two latter schemes is

not large in this example, the discussion reveals that the implicit scheme,

which is subject to neither the stability nor the convergence requirement,

is much more efficient and accurate in problems involving non-vanishing

pressure gradients.
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I. INTRODUCTION

There are many methods for obtaining numerical solutions to nonlinear

partial differential equations of hyperbolic or parabolic type. The following

study concerns the application of numerical methods to the study of the low-

density hypersonic flow based on the mathematical formulation of Ref. 1, in

which the system of governing equations is reduced to one of the parabolic

type, similar to those of the boundary-layer theory.

In preparation for a more general attack, the present investigation is

made with the objective of examining the applicability of certain finite-dif-

ference techniques to the hypersonic shock-layer theory. For this purpose,

analyses and discussions will be made only for the simplest example, that

of hypersonic flow over a cone at low Reynolds number. In this case, under

the assumption of a unit Prandtl number, the governing equations are reducible

to a single parabolic equation, but the solution is no lonier self-similar as

in the boundary-layer theory because of the modified outer boundary condition.

Near the cone apex, an analytic development in ascending powers of the dis-

tance from the apex is valid; while far downstream, an asymptotic, self-

similar solution corresponding to the classical boundary-layer theory exists.

The finite-difference methods provide a valid transition between the two

solutions. The agreement with these two solutions at small and large dis-

tances provides a check of the accuracy of the finite-difference methods.

In the method of finite differences, the derivatives are replaced by the

quotients of the differences, and the partial differential equations are satisfied

approximately at a finite number of grid or lattice points. For an initial-value

problem pertaining to the parabolic and hyperbolic equations, solution by

1 AF- 1285-A-9



forward integration is possible, and the solution to the difference equation can

be determined in terms of previously obtained values at certain preceding sta-

tions or grid line. By employing sufficiently small spacing between grid points,

and with the aid of a high-speed digital computer, one may obtain a numerical

solution with high accuracy.

The manner in which the difference quotients are formed and the equations

approximated gives rise to a variety of difference methods. (2, 3) The simplest

and most commonly known of these is the standard explicit scheme by which

each unknown quantity is determined explicitly in terms of values obtained pre-

viously at a preceding station. (2, 3) This method is, however, restricted by

the stability requirements. Another scheme introduced by DuFort and Frankel(2 ' 3. 4)

is also explicit, in that each unknown value of the solution is determined explicitly

with the known values at two preceding stations in a specific manner. Although

this method is generally stable, the question of convergence may become a crit-

ical problem. In an implicit scheme, (2, 3) each unknown value of the solution is

not determined explicitly in terms of the known quantities at the preceding grid

line but has to be determined simultaneously with other unknowns along the same

grid line. The relative advantage in this method is that there is no stability and

convergence requirement. For brevity, the explicit, DuFort-Frankel explicit

and implicit schemes will be referred to hereafter as the E, D-F and I schemes,

respectively. These three schemes, which are most widely used, are to be dis-

cussed. The variants of these schemes as well as other methods will not be

pursued here.

The finite-difference methods have been applied to viscous flow problems

within the context of the boundary-layer theory by a number of investigators.

2 AF-1285-A-9



Wu used the E scheme, (5) and Der and Raetz(7) employed the D-F scheme.

Kramer and Lieberstein(6) and Flugge-Lotz and co-workers(8 ' ') have applied

and studied E and I schemes as well as their variants to a number of boundary-

layer problems. None has studied and compared all three schemes. In

addition, the singular behavior of the differential and difference equations of

the present study differs from the singularities in the cited boundary-layer

work because of the different formulations used. It is essential to observe in

this connection that, in many boundary-layer works, the momentum-integral

and other equivalent methods may be sufficient. (10) But for the present pro-

blem, as well as other hypersonic rarefied-gas flow problems, the integral

methods (which also involve the stepwise numerical calculations) are shown to

be inadequate because the velocity profiles do not permit simple description

over a wide range of Reynolds number.

In the subsequent section, certain preliminary remarks on the errors,

stability and convergence of the difference approximations will be given. The

model of the flow problem and its governing equations are described in Section

3. In Section 4, essential details of the three finite difference methods are

discussed. In Section 5, the results obtained with these methods are examined

and the relative merit of the three schemes are evaluated.

3 AF- 1285-A-9



II. STABILITY AND CONVERGENCE

In general, there are two types of errors which cause departures from

the exact solution to the partial differential equation; truncation errors and

round-off errors. The first arises from replacing the derivatives by the dif-

ference quotients and may be considered as an error resulting from the trun-

cation of the Taylor series. The second results from the rounding-off in the

numerical computation. Generally, the effect of these errors may be controlled

by reducing the spacing between grids and including more significant figures in

the computation.

In practice, however, the departure from the exact solution due to each

of these errors may grow or decay as computation progresses in a manner which
2

is a property of the difference scheme. Under certain circumstances, the rate

of growth of the departure may become too large to be manageable, that is, it

becomes unstable. On the other hand, there are schemes which are inherently

stable in the sense that in the course of computation the departure due to errors

tends to decay. Many schemes are only conditionally stable; the E scheme is

one of the commonly known examples. 2, 3 The D-F scheme is generally stable

but subject to the problem of convergence. That is, as the spacing of the mesh

is reduced, the solution of the difference equation can not always be reduced to

that of the original differential equation. 2,3 The application of either of the

E and D-F schemes is rather straightforward, but is handicapped by either the

stability or convergence requirement which imposes restrictions on the choices

Error may also result from the inaccurate description of the initial and

boundary conditions.
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of the increments in the two independent variables. In contrast, whereas the

I scheme is generally free from both of the stability and convergence require-

ments. 2, 3

Apparently, in many cases, these restrictions can be satisfied by suitable

adjustments to the spacing used for th; mesh. However, for a differential

equation such as the one to be considered, because of the singularity in the

difference equation, the stability and convergence requirements may become

stringent enough to make further refinements in the mesh size economically

unfeasible. This singularity will occur at the apex of the cone, the leading

edge of a flat plate or the stagnation region of a blunt body. In order to obtain

the solution in the vicinity of the singularity, an expansion in ascending powers

of the distance from the singular point has to be developed so that numerical

integration may begin at some downstream station. In practice, this pro-

cedure introduces an error in the initial data because of the use of truncated

series in the expansion. The error could, of course, be reduced by initiating

the numerical integration at a station closer to the singularity, where higher-

order terms in the expansion are not required. But, because of the singular

behavior of the equations, moving the station upstream would reduce the

scheme's accuracy as well as stability (if the scheme is only conditionally

stable). Thus the presence of the singularity leads inevitably to the use of a

refined mesh size in the vicinity of the singularity and to excessively long

computation time.

p-
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III. THE FLOW MODEL AND ITS GOVERNING EQUATION

The flow model considered pertains to a continuum description of hyper-

sonic, rarefied gas flows over cones. For simplicity, a perfect gas with constant

specific heats is assumed. Without going through the details of the formulation
1

based on the thin shock-layer theory of Cheng, the differential equation govern-

ing the velocity under the assumption of a linear viscosity-temperature relation

can be written for a cone or wedge in terms of a pair of dimensionless variables

o and Y as

The inner boundary condition, at 0, is

W(0) =0 (2)

and the outer boundary condition immediately behind the shock, at P= 1, is

SA ) (3)

where •4 * + . L) and ( are the free-stream and local velocities

respectively. The index >1 is zero for a wedge and unity for a cone. For the

present study, i/ is therefore always taken as unity. The effects of the gas

rarefaction as well as surface inclination are absorbed in the variable

• •. •,4= e P,,) which is essentially a function of

local Reynolds number. The variable • is related to the stream function )P

through A-- One advantage of using as an indepen-

dent variable is that it eliminates the need for determining the location of the

outer edge of the shock layer, as is evident from the boundary condition Eq. (3).

After the velocity is obtained, the total enthalpy can in turn be found.

For a unit Prandtl number the Crocco relation gives 1 0 ',15
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H =HW + (H.-HW)
(6 (4)

where subscripts oo and W/ denote the total enthalpies pertaining to free-

stream and the surface conditions, respectively.

As is characteristic of the equations governing boundary layers and

shock layers the coefficient of 9W//9x vanishes at % =0 which in this case

is the cone apex. This will give rise to a singularity in any method employing

forward integration in 7 . In addition, because of the presence of /2-W

the equation and solution are also singular at the surface, i. e. T = 0. The

latter singularity can be avoided by using the combination of dependent and

independent variables 1 and (ý / " r), in place of W and (7, • ) .

Subsequent discussion will show however that the singularity associated with

"0 turns out to be unimportant. In fact, corrections are not necessary

for the present analysis.

As pointed out in the preceding discussion, a development in powers of

Swill be used to provide a solution in the vicinity of the apex and to furnish

initial data for numerical integration beginning at some downstream station.

The expansion admissible by the differential equations and boundary conditions,

Eqs. (2) and (3), is of the form

or, alternatively
= 7+ 1 4 - .UZ .

where the coefficients U., U, , etc. are determined after collecting equal

powers of ;7, as

7 AF-1285-A-9



Lao

/Z 3 0 (6)

UI.7sO1 (187, 00
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IV. THE THREE FINITE-DIFFERENCE METHODS

In the following, the resultant difference equation, in which the difference

quotients approximate the partial derivatives, will be described for each of the

three schemes mentioned. The manner in which the increments A 7 and AV;

will affect and control the errors, together with the stability and convergence

characteristics of the schemes, will now be studied more closely. No attempt

has been made to establish the proofs of stability and convergence for these

schemes, which is clearly not the objective of this report; however, the stab-

ility and convergence for each of the schemes are demonstrated by the solutions

obtained.

1. The Standard Explicit Scheme (E-Scheme)

(A) Difference Equation - For clarity, the reader is referred to the

sketch of Fig. la. In this scheme, the data along a grid line, say Wtbcolumn,

are assumed known; and the partial derivatives at a point in this column

(;F •ý 3•-,) are evaluated by the difference quotients which appear as

the first terms in the following

89? -X+J? - S,-

SW(....7)

a2 w W'" " - 2 Wal.N + WVylt- 7-19(~) -

The second term on the right of each of the above equations represents the

estimate of the truncation error based on Taylor's Theorem.

Upon using these difference quotients, Eq. (1) is approximately satisfied

at the point ( m , 7 ) and the value of W at the downstream neighboring point

can be evaluated explicitly in terms of values at the three points

9 AF-1285-A-9



(M~nI 71i, ~ and (7n) 72-/)

The boundary conditions in the finite-difference form will be discussed

separately later, as they are applicable in the same manner to all three methods.

(B) Singularities and Truncation Error - Assuming that the solution W

is regular in both 7 and • , application of Eq. (7) introduces a truncation

error in Eq. (8) belonging to the order of [(AF)+@)] + When the step-

sizes 4j and AT# are made successively smaller, one may anticipate that the

truncation error will diminish and the solution to the difference equation Eq.

(8) will converge to that of the differential equation Eq. (1). It is important to

examine more carefully the nature of the truncation error in the neighborhood

of • = 0, as well as that of I = 0 where the solution is singular.

The behavior of W near the cone surface, i. e. = 0, can be inferred

from the differential equation Eq. (1) as

+ b0(r (9)

where a and b are functions of 7 . Because of the singular term bi ,

the difference-quotient approximations of 'If and W/v will contain errors

larger than the order of ('&)V which, however, can be corrected. The

largest errors of this kind occur at -- , that is the first grid point from

the boundary ' = 0. Using Eq. (9), one can express the difference quotients

in terms of a and b . Thus, at U = &F
w,- =W (2 W1)-wo a+b(2M•(A]•) 3/1+o0(A ýr),

10 AP-1285-)A)
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On the other hand, Eq. (9) also yields, at

WT - b + 06"4 P

It follows that, at the worst situation ( • -

f -Wj= -F 6 (10)

The factors ( 2 - . ) and ( 4,'-z- • ) have the values (+0. 3284) and

(-. 0932), respectively. The magnitude of b is generally less than unity.

In fact, the development given by Eq. (5) indicates that b is considerably

less than 1/30. Therefore, having in mind an increment d^ of the order

of 1/10, as in most of the present calculations, the truncation error resulting

from the singularity at = 0 is numerically comparable to, or smaller than,

(A T Consequently, correction of such an error is not necessary. There

fore, the function W will be treated as being regular with respect to all

for all three schemes.

The truncation error is affected more critically by the singularity at

= 0 than that at Tr = 0. In fact, it is so severely affected that the region

near F = 0 has to be excluded from the numerical integration. To elucidate

how the truncation error depends on j , one may apply Eq. (7) to the dif-

ferential equation, Eq. (1), retaining the remainders of the difference quotients,

where the functions W_ , , and on the left-hand side are the dif-

ference quotients given in Eq. (7). The right-hand side of Eq. (11) represents

the estimate of the truncation errors resulting from the difference approximation.

11 AF-1285-A-9
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While g is seen to appear in the last two terms as and in Eq.

(11), the manner in which these error terms will vary with 7 depend on

the singular behavior of W with respect to 3 . Applying the development

of Eq. (5) for small ;F , with the coefficients given by Eq. (6), the terms

on the left-hand side of Eq. (11) are found to be the order of ; , whereas

the three terms on the right-hand side in succession are, respectively, in

the order of (4Vq41z , (4'VT-tW , and ( /'/. The six terms

in Eq. (11) are therefore in the proportion

0(1 00) - 0 Y: 0 o (,,-
At a given j , the last two terms of Eq. (12) become largest at the smallest

value of P ; at = 4, * they become of the order (,)VX- and 1,

respectively. On account of the last of the remainders, the truncation error

of the difference equation cannot be made arbitrarily small as ,4T- is made

to vanish. Fortunately, the terms on the right-hand side of Eq. (11) associated

with A9P are always small, numerically speaking. This fact can readily be

checked by making use of the coefficients of Eq. (6). To represent more

appropriately the relative magnitudes in a numerical sense, the last two terms

in Eq. (12) have, in fact, to be multiplied by a factor of 1/30. Therefore, from

a practical viewpoint, the finite-difference approximation may still be applicable

for small .

(C) Stabilit, - As pointed out before, the difficulty of the E scheme is

not with the truncation error alone, rather, it is a problem of stability. For a

The difference equation is not applied at = 0.

12 AF-1285-A-9



simple parabolic equation, e. g.

19 f = 0 '; "a(13)

with a constant coefficient C- the criterion for the stability of the E

scheme is 3

(14)

The presence of a lower-order derivative, such as U , and W0 will

affect the stability characteristics of the difference equation only through terms

of orders higher than A X and (4dY) ; consequently they are not important

from a practical viewpoint. Similarly, the presence of variable coefficients, 2, 3

as well as the nonlinearity, may also be looked upon as higher-order effects in

the stability consideration, provided that the coefficient c be interpreted

locally, and that increments AXZ and A be taken sufficiently small.

It should be noted at this point that Eq. (14) can be shown to be the nec-

essary and sufficient condition for the stability of the E-scheme with a constant

coefficient " (see Refs. 11 and 12). It has also been shown that Eq. (14)

is a sufficient condition for stability of the E-scheme for a quasi-linear

equation 13

qVU_ _ta lZ

In this connection, a criterion based on an electric network analogy may be

of interest. By considering the stability for the current or voltage in an

electric network, Karplus14 studies the difference equation in the form

13 AF-1285-A-9



% ,p, Wp,, + ............(WL-m, C)'aW -W
-0" . .. .. . . . . . . --- 04~d(W -WQ 'eW .- ) (15)

where a, b, c, d, and e are the coefficients of the difference terms. It

has been shown in Ref. 14 that if all the coefficients are positive, the

equation is stable; and if some of the coefficients are negative, a sufficient

condition for stability is that the algebraic sum of all the coefficients be

negative. For the simple parabolic equation, Eq. (13), application of the

Karplus condition to the E-scheme yields the criterion of Eq. (14). The

Karplus condition may be quite useful in suggesting stability characteristics

of new schemes.

For the stability of Eq. (8) of the E scheme the criterion Eq. (14)

gives the condition

r -_( A < 1(16 )

The factor I/jL in the above inequality places such a stringent restriction

on step sizes that either the increments in ý" become, time wise, intol-

erably small or the increments in T becomes too large for acceptable

truncation errors.

2. The Explicit Scheme of DuFort and Frankel (D-F Scheme)

(A) Difference Equation - Referring to the sketch (b) of Figure 1, for

the D-F scheme, the unknown quantity at a grid point ( e/, f ) is

evaluated in terms of the known quantities at the points ( • iI ),

in.., n-/ ) and ( r-/. f ). Determination of the value at the new

14 AF-1285-A-9
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point ( te/l, m..) therefore involves data along two preceding grid lines,

i.e. the MA and ( x-i) A columns. The difference quotients for the

D-F scheme are the first terms in the following developments2' 3,4

Aw= W.IV11&ZŽM,- J& -/ I.(EWg#----

19Xz(1) V (41 W +------2_W- Mt. X*/ - W-.t -/ (T•) -•(o- + """ ---
- / (17)

"W WM, ol -2-W.,x, W-A'X-t

(A*)2 /

(Afq)Z ýA;;W Ww

The difference quotients used in the D-F scheme, which do not involve the

point ( in.-, iv ) differ from those of Eq. (7) in the E scheme. With Eq. (17)

the differential Eq. (1) can be satisfied approximately at the point ( i, n ).

The following difference equation is obtained

w =-,p A z (AZW,,,,* 43 VW.,•, 4A4 W-,%,,) (18)

where

81z((647) AX- g) Z.(j€, +

In order to determine W at the unknown point ( m+-÷/l - ), values of W

at four points of preceding grid lines ( •t 7÷ ), ( , 7. ), ( ot. n.-/ )

and ( X-I , ?L. ) have to be used. It may be noted that if the coefficients in

the differential equation were constants, the information at the point ( n-, n.)

would not be required, since the difference quotients of this scheme do not

15 AF-1285-A-9



involve the point (in, P).

The above difference Equation (18) is stable for all values of ( )

and (4 ), and the results to be cited here corroborate this conclusion.

Some further discussion on the stability of the D-F scheme for the case

of constant coefficient has been described by Forsythe2 and by Richtmeyer.

(B) Truncation Error and Convergence

Assuming that W/ is regular, the difference equation Eq. (18) is

subject to a truncation error of OE('z W -h(,4Z/,df)2 . The term

0 'a/40'z, which results from the remainder (d/4t• 4/,r.V in the second-

order difference quotient of Eq. (17), reveals an undesirable feature of the

D-F scheme. That is, the truncation error introduced by the difference

quotients cannot be reduced by considering arbitrarily small df and 4T

alone, but rather it is necessary to impose the condition 4X.4;E I ;

otherwise, the difference equation will not converge to the parabolic equation,

but to one of a hyperbolic type.

In order to estimate the magnitudes of the truncation error contributed

by various terms of a difference equation similar to that of Eq. (11) may be

written to include the remainders of Eq. (17) in the following form

Wz-2.W*~~Wf (4~i(4 t ~WL ~(19)

where d, are the difference quotients which in this case are

those defined by the first terms of Eq. (17). The terms on the right-hand

side of Eq. (19) constitute the truncation error of the difference equation

16 AF-1285-A-9



Eq. (18). As 0--- , and with the aid of Eq. (5) the seven terms of

Eq. (19) can be shown to be in the proportion

Clearly, the presence of the singularity at • = 0 not only magnified the

truncation error in the D-F scheme but also makes the problem of conver-

gence more critical.

3. Implicit Scheme ( I Scheme)

(A) Difference Equation

In this scheme, the unknown quantities along a column of grid points,

say the ( x#÷/)-column, are solved simultaneously with known data along

the m, grid line (refer to sketch (c) of Fig. 1). The difference quotients

defining the I- scheme are constructed according to the first terms in the
S2,9

following expansion

(4ýF) 
2

Sffi _ (fl

With the difference quotients of Eq. (21), the differential equation, Eq. (1),

is reduced to a system of linear algebraic equations with the Ws' in the

(•÷I )-column.

For numerical consideration, one must multiply the fifth and the sixth terms

in Eq. (20) by a factor of 1/30. Note also that T 0

17 AF-1285-A-9



where

ftL= 4 8t'2wm  (4if)

] (•)= I .,,

The integer n, is taken from 1 to N for each Mo , with x,/= 1 corresponding

to the first grid point from the "cone surface" and X-N corresponding to the

boundary point at the shock. Or, in an expansion form

/ / , ,)W.,,,h(J)Wm#,z = WaI,

where W..I and W.jq denote values to be determined by the inner

and outer boundary conditions respectively. These equations, together with

the two boundary conditions, form a system which suffices for the determin-

ation of the ( N÷I ) unknowns. The matrix of this system is of the tridiagonal

type, and the solution can thus be obtained by following standard procedures,

18 AF-1285-A-9



e.g. Gauss' elimination method.

(B) Truncation Error

The choice of the mesh spacings for 4 2 and Af in this scheme is

not subject to the stability and the convergence requirements. 2,3 Generally,

in the I-scheme, the difference equation, Eq. (22), is subject to the trunca-

tion errors of the order [(43)* (4)JI . The error of 0(*0)arises from

the use of the backward-difference quotient for da/W• as well as from re-

placing F/ 2 1 M", by f2Wft'n . Note that the differential equation is

satisfied in this scheme at the station ( m,-/I ). To examine more thoroughly

the manner by which the singularity at F = 0 affects the truncation error,

one may again express the difference equations, Eq. (22), in a form similar

to that of Eq. (11) and (19).

4r2-WW 2 W(23)

where the terms on the right-hand side again represent the remainder of the

difference equation. The same estimate of each term in Eq. (11) holds for

the corresponding term in Eq. (23) except the last (additional) term, which

arises from replacing •2 WZII ' by • 'Wý , is of the order of

(A f/. 7) - As . -"- o , the seven terms of Eq. (23) are thus in the

proportion

OW): OW(:O() -O[X 10[(,df)~~:[$' 0 0 A[J (24)

Clearly the accuracy ,of this scheme is still greatly affected by the singular

point. The problem, however, is far less critical than encountered in the E
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and D-F schemes.

4. Boundary Conditions

The conditions at the "cone surface" and at the shock are the inner and

outer boundary conditions, respectively. The difference equation for the

inner boundary condition is simply

Wm#,, 0=0 (25)
In order to determine W at the outer boundary with an accuracy comparable

to that obtained with the difference equations, the derivative ýWlaT at a boun-

dary point will be expressed in terms of W at the neighboring points (refer

to sketch (d) in Fig. I) as

3 ,,f /,,q - (W.÷,,V-1 +W,,,-2 0 (d), (26)

Notice that, because of the term /2W , the boundary condition Eq. (3) is

nonlinear. Hence, one would have to solve a quadratic algebraic equation

for the boundary value of W To simplify the numerical computation, one

may replace I /I,N by A/2ýW,N , which introduces only an error

of O(AT) and is consistent with the accuracy of all three schemes. The

outer boundary conditions can therefore be satisfied

MI,,,,, W 3( 94 ,- W-., Sj" 7M4l9(/1W~,) (27)

In the implicit scheme, Eq. (27) is used to eliminate t., in the last

equation of the system of Eq. (22).

Again, in order to compare the relative magnitudes of the terms in Eq.
(24) in a strict numerical sense, one must multiply both (,d and

/) by a factor of 1/30.
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V. DISCUSSION OF RESULTS

In the preceding sections, three difference schemes have been des-

cribed for the cone problem. Excluding the region near the singularity

F 0, the truncation error in the difference approximation belongs to

0 U )4i•L for the E and I schemes, and to oE +(Zfj for the

D-F scheme. By making 4 Y << 4&P<I , not only can the truncation errors

in all the schemes be reduced, but also the stability and convergence require-

ments for the E and D-F schemes can be satisfied.

The singularity at " = 0 makes the accuracy of the solution, or

alternatively the efficiency of all three schemes, very poor, as the cone apex

is approached. The singularity also makes the stability and convergence pro-

blems of the E and D-F schemes more critical. This poses a serious problem

in practice, because application of any of these schemes over a range of "

which begins at a large Y" to avoid the adverse effect of the singularity,

cannot avoid encountering a difficulty of another kind. For, in order to provide

accurate initial data at a station far removed from Y = 0, one has to use

"a large number of high-order terms in the development of Eq. (5). In Eq. (5),

"a four-term expansion has been obtained for the purpose of the present study.

But in other more general problems, the task of determining the coefficients

of the higher-order terms would be too burdensome.

In the following comparison of the three schemes, examination will be

made first over the range < .. , and then over a more critical range

,0/- " 0. 2. The skin-friction and heat-transfer coefficients, as well

as the velocity profiles obtained by the I-scheme will be presented over a

wide range: 0.01 . /0
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5. 1 Numerical Integration Beginning at • = 0. 20

From the Crocco relation Eq. (4),

cm = CF/2 cos/3 (28)

where Cy and CF are the surface heat-transfer and skin-friction coefficients,

defined as

==
/00 ( •-Hw 7 - " 19 (29)

Typical results obtained from the three methods are presented in Figs. 2 and

3. In Fig. 2, Cy¢ and CF obtained by the E, I and D-F schemes over the

range 0. 2 1T - 1. 0 are compared. In order to provide the initial data at

" = 0. 2 with an error no more than 1%, all terms in the four-term expan-

sion in 3 given in Eq. (5) have to be used. The calculations were performed

by an IBM 704 digital computer, carrying eight significant figures.

It was found that the choice of 4n = 1/10 is sufficient for all three

schemes. However, the step-size 6• had to be varied with different schemes

to accomodate the stability and convergence requirements as well as the singu-

larity affect on truncation errors. In the E scheme, the increment At< 5xi0 5

is required in order to fulfill the stability condition at 3F = . 20. A smaller

-55
step-size 4t• = 2.5 x 10- was chosen in the calculation because instability

has actually occurred with 4 = 5 x 10- . Two runs were made for each of

the land D-F schemes, first with A F = 1/100, AI = 1/10 and the second

with AX = 1/1000, A;Z= 1/10. The good agreement among results of the

second runs of I and D-F schemes as well as the E scheme provides a prelim-

inary indication of the adequate accuracy of these schemes. The accuracies
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are less satisfactory for the first runs of the I and D-F schemes with

S1/100, particularly the latter. The total computation times (includ-

ing print-out at the . 05-intervals of • ) are approximately 45 minutes

for the E scheme, 20 seconds for the first runs of the I and D-F schemes,

and 100 seconds for the second runs of the I and D-F schemes.

Notice that the running time for both I and D-F schemes are about

the same; nevertheless, with the same set of increments, the D-F scheme

is less accurate as shown in Fig. 2.

5. 2 Numerical Integration Beginning at % = . 01

As a more crucial test of the usefulness of the methods, calculations

were carried out and compared over the range of a smaller ; (0. 1 4 - 0. 3).

The initial data can be adequately provided by the first two-terms in the

development of Eq. (5) but the problems of the singularity tends to be more

critical. In fact, the computation by IBM 704 for the E scheme becomes

virtually impossible under the stringent stability requirement over this range.

Thus, only the results from I and D-F schemes are considered. The two

schemes are first carried out with the increments 67= 1/100, and 4= 1/10,

thenwithA = 1/1000 and Af = 1/10. As shown in Fig. 3, the departure

of the solution by the D-F scheme is greatly amplified at small " , where

the singularity makes satisfaction of the convergence requirement more

difficult. Even in the second run with a more refined step-size in T , a

small but appreciable error of about 4% still exists for the D-F scheme.

The I-scheme in the second run with Af= 1/1000 and 4I% = 1/10 yields

good accuracy, agreeing with the four-term analytic development of Eq. (5)

throughout the entire range of .01 % T-r .3. The computation time
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(including print-out) of the runs with A6 1/1000 and 4• = 1/10 was

about 110 seconds for each scheme.

5. 3 Discussion on the Efficiency of the Three Schemes

In summarizing the results presented in Figs. 2 and 3, the E scheme

is definitely less efficient and not suitable for the treatment of singular dif-

ferential equations such as Eq. (1). With the same intervals of 67 and 4•,

the computation time for the E scheme is 45 minutes, but only 20 seconds for

the I and D-F schemes. The examples show that the singularity at " = 0

affects critically the accuracy and efficiency of both the I and the D-F schemes,

especially if higher-order terms in the development about the singular point

are not available. The I scheme, which is subject to neither the stability nor

the convergence requirements, proves in this instance to be somewhat more

reliable than the D-F scheme. This relative merit of the I scheme is com-

prehensible in the light of the discussion in Section IV. One may recall that

the largest truncation error in the I scheme is of o4-) whereas the largest

in the D-F scheme is ofO7(J .

It is of interest to note that the truncation errors associated with 4Al

were found to be very small. Calculations have been repeated with 'di7T

changed from 1/10 to 1/50 without appreciable difference in the solution.

The comparative insensitivity of the solutions to the interval AT in both the

I and D-F schemes is also understandable from the previous discussion,

that there is always a small numerical factor associated with the (4• )A

terms in the remainders of the difference equation, which compensates

partly for the adverse effects of the singularity. This insensitivity is, of

course, a property peculiar to the specific problem considered. However,
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in a more general case, especially if the pressure gradients do not vanish,

one may have to refine not only the increment in F but also the step-size

of AtA as '-- 0 . In that case, the freedom from the convergence

requirement makes the I scheme even more superior.

5.4 Discussion of the Numerical Solutions

In order to demonstrate the accuracy of the method the numerical

solution to Eqs. (1) - (3) is carried out for hypersonic flow over a cone

under the I scheme from 2" = 0.01 to " = 10. The computation was made

in two stages of different step sizes in " In the first stage, the integra-

tion by the I scheme, with AY = 1/1000, df= 1/10, was carried out from

S= 0. 01 to T = 0. 2 with the initial data provided by the four-term expan-

sion of Eq. (5). The integration by I scheme was continued in the second

stage from T = 0.2 through 10 with a larger step-size in T" , ( 4A = 1/100,

AT= 1/10). The total computation time (including print-out at 0. 05 interval

of Y ) was about two minutes, with 38 seconds for the first stage and 90

seconds for the second stage. The results for skin friction, surface heat-

transfer rate, and velocity profiles are presented in Figs. 4, 5, and 6.

The ratios of C //M and Cp/A*/z given in Fig. 4 are in good agree-

ment with the analytic development obtained for the region of Y<.1, and

approach the correct values of the classical boundary-layer theory for

T-P--oo . The velocity profiles of the shock layer at various distances

from the apex are given in Fig. 5. At low value of 3 , the distribution is

In such a general case, the correction for the singularity associated with
S= 0 will be no longer as small as represented by Eq. (10), and cannot

be neglected. However, as pointed out previously, this singularity can be
eliminated by using the variable a and V7 instead of W and # . The new
variables will introduce a factor of 1//4' to the remainder of the difference
equations and make the use of the I scheme (rather than other schemes) more
desirable.
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linear in Y' corresponding to a uniform shear flow. As " increases,

the velocity gradient increases near the surface and decreases near the

shock, with the velocity in the outer portion approaching to the tangential

component of the free-stream velocity.

It is rather interesting to observe that, even at 7 as low as 3,

the flow field can already be represented very closely by the classical

boundary-layer limit, in spite of the fact that the velocity at the outer edge

is still quite far from the inviscid value and that the viscous layer is still

a major fraction of the shock layer. To clearly demonstrate this observation,

the velocity profiles at various " stations are correlated in terms of the

similarity variable

and presented in Fig. 6. The good correlation and excellent agreement with

the Blasius profile provide another check on the validity and accuracy of the

method.

It should be noted that, in order to apply the solution obtained, one

must relate the variable ý- with the Reynolds number (or its reciprocal,

the Knudsen number) based on the free-stream flow condition. This involves

a choice of the reference temperature 7. because of the linear viscosity-

temperature relation used, 1,15 which in this case may be simply taken as

T.o .LJ. TO To 7 3
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VI. CONCLUSION

The relative merit of three difference schemes for integrating the

viscous shock-layer equation has been investigated with specific reference

to the problem of low density hypersonic flow over a cone. The difference

quotients and equations defining each of the schemes have been derived and

the nature of the singularities on the solution and their effects on the stability

and convergence characteristics of these schemes were studied.

There are two singularities in the solution. One is associated with

the leading-edge ( 7 = 0) and the other with the cone surface ( f = 0).

Close examination shows that the latter has little effect on the results. The

leading-edge singularity on the other hand critically affects the accuracy and

efficiency of all schemes, particularly the stability characteristics of the

explicit scheme. Because of this effect, one must either increase the number

of the higher-order terms in the power-series expansion around the leading

edge (so as to maintain the accuracy of the initial data at a comparatively

large value of 7 ), or further refine the step-size in X (so as to maintain

the accuracy of the difference equation at a comparatively small value of T ).

The three schemes applied to the cone problem were carried out with

the aid of the IBM 704 digital computer. The results indicate that, because of

the leading-edge singularity, the stability requirement becomes too stringent

for the explicit scheme to be useful. While the difference in efficiency of the

implicit and DuFort-Frankel schemes is actually not large for this example,

the implicit scheme, which is subject to neither the stability nor the conver-

gence requirements, is seen to be more reliable. It is noted, furthermore,

that in the more general problems with non-vanishing pressure gradients, the

implicit scheme should be more advantageous.
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A•

(a) THE EXPLICIT SCHEME (b) THE EXPLICIT SCHEME OF
DUFORT-FRANKEL TYPE

X UNKNOWN POINT

0 KNOWN POINT

(Cal, ks#I)

(c) THE IMPLICIT SCHEME (d) DIFFERENCE 9UOTINENT FOR
THE BOUNDARY POINT

Figure I SKETCH FOR CONSTRUCTING DIFFERENCE QUOTIENTS
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